

***Phacomyxa sphagnophila* Skuja 1956**

Most likely ID: n.a.

Synonym: n.a.

Sampling location: [Simmelried](#)

Phylogenetic tree: [*Phacomyxa sphagnophila*](#)

Diagnosis:

- colonies spherical to irregularly shaped plates
- colonies of 4-16 cells, rarely more,
- cells embedded in mucilaginous envelope
- cells globular, lenticular, ovoid or angular (after cell division)
- diameter 6-10 μm (of cells)
- 3-8 parietal chloroplasts
- pyrenoid absent
- nucleus central
- cell wall smooth
- reproduction mainly by binary cell division

Phacomyxa sphagnophila

So far I have only found *Phacomyxa sphagnophila* in the [Simmelried](#). This alga appeared there for the first time in 2023. Before that I have no evidence.

Phacomyxa sphagnophila was first described by Skuja (1956). The following authors Komárek & Fott (1983) and F. Hindák & A. Hindáková (2008) incorrectly adopted the name as *Phacomyxa sphagnicola*.

It was assumed by F. Hindák & A. Hindáková (2008) that *Phacomyxa sphagnophila* is synonymous with the species *Dispora speciosa* and *Dispora crucigenoides*. The species are indeed very similar, but it seems that this assumption has been confirmed by F. Hindák & A. Hindáková has not been officially recognized.

Young colonies are usually flat and plate-shaped. Binary cell divisions are often found in them. The daughter cells are often angular in shape, sometimes almost triangular, which is very typical for *Phacomyxa sphagnophila* (s. figs. 1 and 2). Older cells are mostly globular (s. figs. 3 and 5). In my population the older cells had a diameter of 7–9 µm, which fits very well with the description by F. Hindák & A. Hindáková. The cells were described by Skuja (1956) as being somewhat larger with a diameter of 9–15 µm.

Phacomyxa sphagnophila
Obj. 60 X

Fig. 1: *Phacomyxa sphagnophila*. A plate-shaped colony of 8 cells during binary cell division. Note the angular shape of the daughter cells. Obj. 60 X.

Fig. 2: *Phacomyxa sphagnophila*. D = 7-8 μm (of cells). A second plate-shaped colony of 8 cells during binary cell division. Obj. 60 X.

Phacomyxa sphagnophila
Obj. 100 X

© Martin Kreutz

Fig. 3: *Phacomyxa sphagnophila*. D = 7-9 μm (of cells). A squashed colony with globular cells and cells during cells division. Obj. 100 X.

Fig. 4: *Phacomyxa sphagnophila*. D = 7-9 μm (of cells). A second squashed colony with ovoid cells and cells during cells division. Obj. 100 X.

Fig. 5 a-b: *Phacomyxa sphagnophila*. D = 7-8 μm (of cells). Two focal planes of 6 cells. Note the central nucleus (Nu). Obj. 100 X.