Sporotetras polydermatica (Kützing) Kostikov, Darienko,

Lukesová & L.Hoffmann, 2002

Most likely ID: n.a.

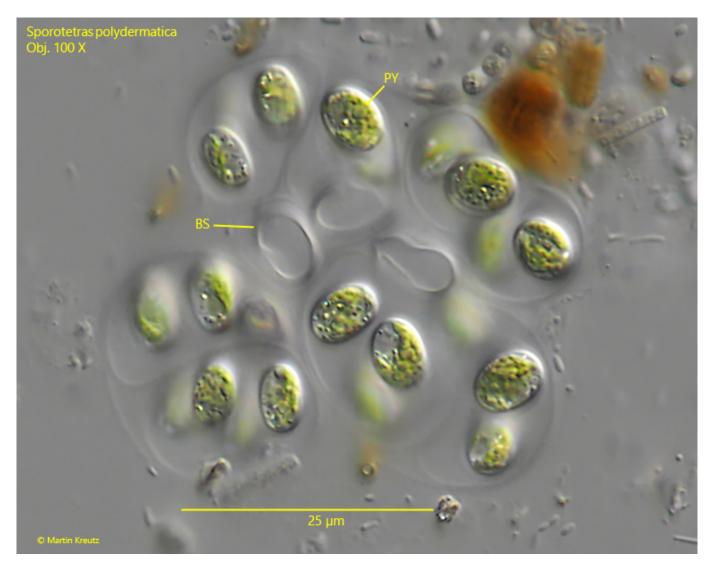

Synonym: Gloeocystis polydermatica

Sampling location: Simmelried

Phylogenetic tree: <u>Sporotetras polydermatica</u>

Diagnosis:

- cells ellipsoidal or oval, sometimes asymmetric
- length 6-11 μm, width 3.6-6.2 μm
- colonies irregularly shaped, amorphous and mucilaginous
- cells irregularly distributed in the colonies
- one, two or four cells in concentrically layered envelopes
- one chloroplast, cup-shaped, filling two-thirds of cell
- older cells filled with oil droplets and starch grains
- one pyrenoid


after Fott & Novakova

Sporotetras polydermatica

I find Sporotetras polydermatica regularly but rarely in the Simmelried. The colonies are about 20 X 30 µm according to Hindák (1978). This is also about the size of the colonies in my population with diameters of $20-70 \mu m$ (not squashed). The cells in my population were mostly between 8-10 µm long and oval. The chloroplast is cup-shaped (s. fig. 4) and I could observe one pyrenoid (s. figs. 1 and 4). The cells were irregularly distributed in the colony and surrounded by a concentrically layered envelope (s. figs. 3 and 4). Thus, all features agree with the descriptions of Kostikov et al. and of Hindak (who described it as Gloeocystis polydermatica).

Fig. 1: Sporotetras polydermatica. $D = 52 \mu m$ (of colony). A colony of about 50 cells. Obj. 100 X.

 $\textbf{Fig. 2:} \ \textit{Sporotetras polydermatica.} \ \textit{A slightly squashed, small colony with some empty spaces (BS). Obj. 100 X.$

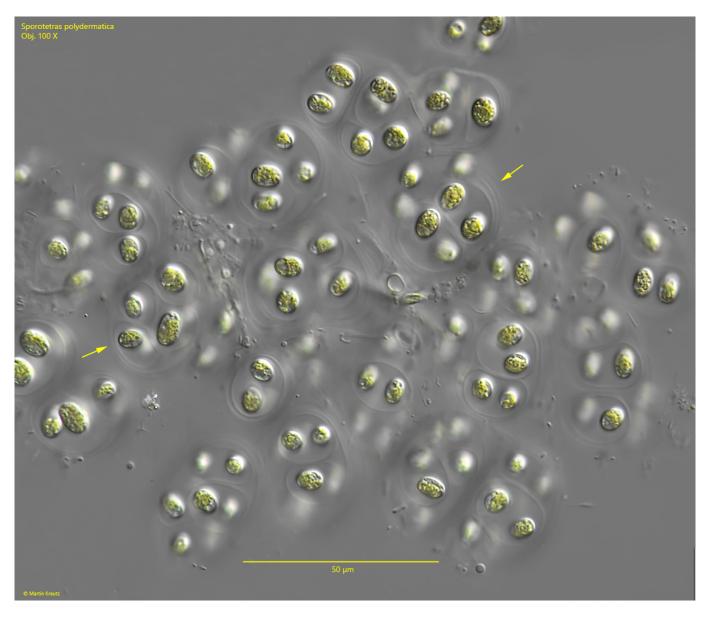


Fig. 3: Sporotetras polydermatica. A slightly squashed larger colony. Note the concentrically layered envelope covering the cells (arrows). Obj. 100 X.

Fig. 4: Sporotetras polydermatica. $L = 8.0-9.1 \mu m$ (of cells). A slightly squashed colony in detail. Note the cup-shaped chlorplast (Chl) of the cells. CE = concentrically layered envelope, Nu = nucleus, PY = pyrenoid. Obj. 100 X.