

Thiospira winogradskyi

(Omelianski, 1905) Visloukh, 1914

Most likely ID: n.a.

Synonym: n.a.

Sampling location: [Schwemm Moor Austria](#)

Phylogenetic tree: [*Thiospira winogradskyi*](#)

Diagnosis:

- cells rod-shaped, counterclockwise coiled
- length 20–60 µm, width 1.5–3.5 µm
- large sulphure globules in a row
- polar flagella at one or both cell ends

after Skuja

Thiospira winogradskyi

I found large numbers of *Thiospira winogradskyi* in samples from the [Schwemm Moor](#) (Austria). The only accurate description of this sulfur bacterium appears to be that provided by Skuja (1956).

The species within the genus *Thiospira* are characterized by a spiral-shaped body and sulfur globules, which are always arranged in a row within the cells. In addition, the cells have flagella at one or both ends, which are often twisted into bundles.

The individual species within the genus *Thiospira* differ mainly in terms of cell diameter and length. The cells in my population had a diameter of 2.5–3.0 μm . This rules out the species *Thiospira tenuis*, which has a diameter of 0.8–1.0 μm , and [*Thiospira dextrogyra*](#), which has a diameter of 1.0–1.3 μm . The species *Thiospira bipunctata* has two conspicuously large sulfur globules and no globules arranged in a row. This leaves the species *Thiospira winogradskyi*, which is said to have a diameter of 1.5–3.5 μm . This corresponds to the diameter of the cells in my population. However, Skuja specifies a cell length of 20–60 μm for *Thiospira*

winogradskyi, while the cells in my population were 12-22 μm long. However, since there are no alternatives to *Thiospira winogradskyi* and the cells in my population correspond to Skuja's drawings (s. above), I am sticking with this species.

Fig. 1: *Thiospira winogradskyi*. L = 13-21 μm . An accumulation of freely swimming specimens. Obj. 100 X.

Fig. 2: *Thiospira winogradskyi*. L = 11-21 μ m. A second accumulation of freely swimming specimens. Obj. 100 X.

Thiospira winogradskyi
Obj. 100 X

© Martin Kreutz

Fig. 3: *Thiospira winogradskyi*. L = 12-19 μm . Some slightly squashed specimens.
Obj. 100 X.

Fig. 4 a-e: *Thiospira winogradskyi*. L = 13-22 μ m. Some specimens in detail. Each cell has a polar bundle of flagella at both ends (F1, F2). In the cells large sulphur globules (SG) are arranged in a row. Obj. 100 X.

Fig. 5: *Thiospira winogradskyi*. L = 13-18 μ m. Some specimens scattered in a detritus flake. Obj. 100 X.